NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea

نویسندگان

  • Yohei Honkura
  • Hirotaka Matsuo
  • Shohei Murakami
  • Masayuki Sakiyama
  • Kunio Mizutari
  • Akihiro Shiotani
  • Masayuki Yamamoto
  • Ichiro Morita
  • Nariyoshi Shinomiya
  • Tetsuaki Kawase
  • Yukio Katori
  • Hozumi Motohashi
چکیده

Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2(-/-) mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2(-/-) mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2(-/-) mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss

Objective(s): Noise-induced hearing loss (NIHL) is the major cause of acquired hearing loss.  Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is a non- steroidal anti- inflammatory drug (NSAID) with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS) and cochlear damage caused by high level 4- kHz noise exposure t...

متن کامل

Effect of Ascorbic Acid on Noise Induced Hearing Loss in Rats

Introduction: After presbycusis, noise-induced hearing loss is the second most common cause of acquired hearing loss. Numerous studies have shown that high-intensity noise exposure increases free radical species; therefore, use of antioxidants to detoxify the free radicals can prevent cellular damage in the cochlea. We studied the potential hearing protective effect of different doses of ascorb...

متن کامل

Effect of Myricetin on the Prevention of Noise-Induced Hearing Loss-An Animal Model

Introduction: Exposure to hazardous noise induces one of the forms of acquired and preventable hearing loss that is noise-induced hearing loss (NIHL). Considering oxidative stress as the main mechanism of NIHL, it is possible that myricetin can protect NIHL by its antioxidant effect. Therefore, the present study aimed to investigate the preventive effect of myricetin on NIHL.  <br /...

متن کامل

Investigating the Effects of Exposure to Continuous White Noise on SLC26A4 Gene Expression Levels in Male Rat Cochlea

Background and purpose: Irreversible damage to the inner ear is known as noise-induced hearing loss (NIHL). Exposure to excessive noise can affect the expression of genes in molecules involved in development of NIHL. SLC26A4 gene or PDS is responsible for causing both syndromic and non-syndromic deafness and is located at DFNB site. The aim of this study was to investigate the expression level ...

متن کامل

Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense.

This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016